Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551069

RESUMO

Among all neoplasms, melanoma is characterized by a very high percentage of cancer stem cells (CSCs). Several markers have been proposed for their identification, and lipid droplets (LDs) are among them. Different techniques are used for their characterization such as mass spectrometry, imaging techniques, and vibrational spectroscopies. Some emerging experimental approaches for the study of LDs are represented by correlative light-electron microscopy and by correlative Raman imaging-scanning electron microscopy (SEM). Based on these scientific approaches, we developed a novel methodology (CREL) by combining Raman micro-spectroscopy, confocal fluorescence microscopy, and SEM coupled with an energy-dispersive X-ray spectroscopy module. This procedure correlated cellular morphology, chemical properties, and spatial distribution from the same region of interest, and in this work, we presented the application of CREL for the analysis of LDs within patient-derived melanoma CSCs (MCSCs).


Assuntos
Gotículas Lipídicas , Melanoma , Humanos , Elétrons , Microscopia Eletrônica de Varredura , Análise Espectral Raman/métodos , Células-Tronco Neoplásicas
2.
Soft Matter ; 18(27): 5097-5105, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766131

RESUMO

Polymer filaments form the foundation of biology from cell scaffolding to DNA. Their study and fabrication play an important role in a wide range of processes from tissue engineering to molecular machines. We present a simple method to deposit stretched polymer fibers between micro-pillars. This occurs when a polymeric drop impacts on and rebounds from an inclined superhydrophobic substrate. It wets the top of the pillars and pulls out liquid filaments which are stretched and can attach to adjacent pillars leaving minuscule threads, with the solvent evaporating to leave the exposed polymers. We use high-speed video at the microscale to characterize the most robust filament-forming configurations, by varying the impact velocity, substrate structure and inclination angle, as well as the PEO-polymer concentration. Impacts onto plant leaves or a randomized nano-structured surface leads to the formation of a branched structure, through filament mergers at the free surface of the drop. SEM shows the deposition of filament bundles which are thinner than those formed by evaporation or rolling drops. Raman spectroscopy identifies the native mode B stretched DNA filaments from aqueous-solution droplets.


Assuntos
Citoesqueleto , Polímeros , Diagnóstico por Imagem , Polímeros/química , Água/química
3.
J Nanobiotechnology ; 20(1): 282, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710420

RESUMO

BACKGROUND: Nanotopographical cues play a critical role as drivers of mesenchymal stem cell differentiation. Nanowire scaffolds, in this regard, provide unique and adaptable nanostructured surfaces with focal points for adhesion and with elastic properties determined by nanowire stiffness. RESULTS: We show that a scaffold of nanowires, which are remotely actuated by a magnetic field, mechanically stimulates mesenchymal stem cells. Osteopontin, a marker of osteogenesis onset, was expressed after cells were cultured for 1 week on top of the scaffold. Applying a magnetic field significantly boosted differentiation due to mechanical stimulation of the cells by the active deflection of the nanowire tips. The onset of differentiation was reduced to 2 days of culture based on the upregulation of several osteogenesis markers. Moreover, this was observed in the absence of any external differentiation factors. CONCLUSIONS: The magneto-mechanically modulated nanosurface enhanced the osteogenic differentiation capabilities of mesenchymal stem cells, and it provides a customizable tool for stem cell research and tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Nanofios , Diferenciação Celular , Células Cultivadas , Osteogênese/fisiologia , Engenharia Tecidual , Alicerces Teciduais
4.
Small Methods ; 6(7): e2200402, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595684

RESUMO

In this study, transmission electron microscopy atomic force microscopy, and surface enhanced Raman spectroscopy are combined through a direct imaging approach, to gather structural and chemical information of complex molecular systems such as ion channels in their original plasma membrane. Customized microfabricated sample holder allows to characterize Nav channels embedded in the original plasma membrane extracted from neuronal cells that are derived from healthy human induced pluripotent stem cells. The identification of the channels is accomplished by using two different approaches, one of them widely used in cryo-EM (the particle analysis method) and the other based on a novel Zernike Polynomial expansion of the images bitmap. This approach allows to carry out a whole series of investigations, one complementary to the other, on the same sample, preserving its state as close as possible to the original membrane configuration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Canais de Sódio Disparados por Voltagem , Membrana Celular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Análise Espectral , Canais de Sódio Disparados por Voltagem/química
5.
Micromachines (Basel) ; 12(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34945349

RESUMO

Superhydrophobic surfaces display an extraordinary repulsion to water and water-based solutions. This effect emerges from the interplay of intrinsic hydrophobicity of the surface and its morphology. These surfaces have been established for a long time and have been studied for decades. The increasing interest in recent years has been focused towards applications in many different fields and, in particular, biomedical applications. In this paper, we review the progress achieved in the last years in the fabrication of regularly patterned superhydrophobic surfaces in many different materials and their exploitation for the manipulation and characterization of biomaterial, with particular emphasis on the issues affecting the yields of the fabrication processes and the quality of the manufactured devices.

6.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34947740

RESUMO

In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.

7.
Micromachines (Basel) ; 12(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34577737

RESUMO

This review looks at the different approaches, techniques, and materials devoted to DNA studies. In the past few decades, DNA nanotechnology, micro-fabrication, imaging, and spectroscopies have been tailored and combined for a broad range of medical-oriented applications. The continuous advancements in miniaturization of the devices, as well as the continuous need to study biological material structures and interactions, down to single molecules, have increase the interdisciplinarity of emerging technologies. In the following paragraphs, we will focus on recent sensing approaches, with a particular effort attributed to cutting-edge techniques for structural and mechanical studies of nucleic acids.

8.
ACS Nano ; 15(4): 7500-7512, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33749234

RESUMO

The activation of the T cell mediated immune response relies on the fine interaction between the T cell receptor on the immune cell and the antigen-presenting major histocompatibility complex (MHC) molecules on the membrane surface of antigen-presenting cells. Both the distribution and quantity of MHC/peptide complexes and their adequate morphological presentation affect the activation of the immune cells. In several types of cancer the immune response is down-regulated due to the low expression of MHC-class I (MHC-I) molecules on the cell's surface, and in addition, the mechanical properties of the membrane seem to play a role. Herein, we investigate the distribution of MHC-I molecules and the related nanoscale mechanical environment on the cell surface of two cell lines derived from colon adenocarcinoma and a healthy epithelial colon reference cell line. Atomic force microscopy (AFM) force spectroscopy analysis using an antibody-tagged pyramidal probe specific for MHC-I molecules and a formula that relates the elasticity of the cell to the energy of adhesion revealed the different population distributions of MHC-I molecules in healthy cells compared to cancer cells. We found that MHC-I molecules are significantly less expressed in cancer cells. Moreover, the local elastic modulus is significantly reduced in cancer cells. We speculate that these results might be related to the proven ability of cancer cells to evade the immune system, not only by reducing MHC-I cell surface expression but also by modifying the local mechanical properties affecting the overall morphology of MHC-I synapse presentation to immune cells.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Células Apresentadoras de Antígenos , Análise por Conglomerados , Colo , Antígenos de Histocompatibilidade Classe II , Complexo Principal de Histocompatibilidade
9.
ACS Nano ; 15(2): 2698-2706, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33470788

RESUMO

MXene-based hydrogels, a flourishing family of soft materials, have recently emerged as promising candidates for stretchable electronics. Despite recent progress, most works use MXenes as conductive nanofillers. Herein, by tuning the molecular interactions between MXene nanosheets and other constituents within the hydrogels, we demonstrate Ti3C3Tx MXene can act as a versatile cross-linker to activate the fast gelation of a wide range of hydrogels, starting from various monomer- and polymer-based precursors. The gelation behavior varies significantly across hydrogels. In general, the fast gelation mechanism is attributed to the easier generation of free radicals with the help of Ti3C2Tx MXene and the presence of multiscale molecular interactions between MXene and polymers. The use of MXene as a dynamic cross-linker leads to superior mechanical properties, adhesion, and self-healing ability. Owing to the inherent photothermal behavior of Ti3C3Tx and the heterogeneous phase-transforming features of polymers, a polymer-MXene hydrogel is demonstrated to exhibit distinctive thermosensation-based actuation upon near-infrared illumination, accompanied by rapid shape transformation.

10.
Genes Dis ; 7(4): 620-635, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33335962

RESUMO

Lipid Droplets (LDs) are emerging as crucial players in colon cancer development and maintenance. Their expression has been associated with high tumorigenicity in Cancer Stem Cells (CSCs), so that they have been proposed as a new functional marker in Colorectal Cancer Stem Cells (CR-CSCs). They are also indirectly involved in the modulation of the tumor microenvironment through the production of pro-inflammatory molecules. There is growing evidence that a possible connection between metabolic alterations and malignant transformation exists, although the effects of nutrients, primarily glucose, on the CSC behavior are still mostly unexplored. Glucose is an essential fuel for cancer cells, and the connections with LDs in the healthy and CSC populations merit to be more deeply investigated. Here, we showed that a high glucose concentration activated the PI3K/AKT pathway and increased the expression of CD133 and CD44v6 CSC markers. Additionally, glucose was responsible for the increased amount of Reactive Oxygen Species (ROS) and LDs in both healthy and CR-CSC samples. We also investigated the gene modulations following the HG treatment and found out that the healthy cell gene profile was the most affected. Lastly, Atorvastatin, a lipid-lowering drug, induced the highest mortality on CR-CSCs without affecting the healthy counterpart.

11.
Pharmaceutics ; 12(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911620

RESUMO

Mesoporous materials are structures characterized by a well-ordered large pore system with uniform porous dimensions ranging between 2 and 50 nm. Typical samples are zeolite, carbon molecular sieves, porous metal oxides, organic and inorganic porous hybrid and pillared materials, silica clathrate and clathrate hydrates compounds. Improvement in biochemistry and materials science led to the design and implementation of different types of porous materials ranging from rigid to soft two-dimensional (2D) and three-dimensional (3D) skeletons. The present review focuses on the use of three-dimensional printed (3DP) mesoporous scaffolds suitable for a wide range of drug delivery applications, due to their intrinsic high surface area and high pore volume. In the first part, the importance of the porosity of materials employed for drug delivery application was discussed focusing on mesoporous materials. At the end of the introduction, hard and soft templating synthesis for the realization of ordered 2D/3D mesostructured porous materials were described. In the second part, 3DP fabrication techniques, including fused deposition modelling, material jetting as inkjet printing, electron beam melting, selective laser sintering, stereolithography and digital light processing, electrospinning, and two-photon polymerization were described. In the last section, through recent bibliographic research, a wide number of 3D printed mesoporous materials, for in vitro and in vivo drug delivery applications, most of which relate to bone cells and tissues, were presented and summarized in a table in which all the technical and bibliographical details were reported. This review highlights, to a very cross-sectional audience, how the interdisciplinarity of certain branches of knowledge, as those of materials science and nano-microfabrication are, represent a growing valuable aid in the advanced forum for the science and technology of pharmaceutics and biopharmaceutics.

12.
Commun Biol ; 3(1): 457, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820203

RESUMO

Methods to produce protein amyloid fibrils, in vitro, and in situ structure characterization, are of primary importance in biology, medicine, and pharmacology. We first demonstrated the droplet on a super-hydrophobic substrate as the reactor to produce protein amyloid fibrils with real-time monitoring of the growth process by using combined light-sheet microscopy and thermal imaging. The molecular structures were characterized by Raman spectroscopy, X-ray diffraction and X-ray scattering. We demonstrated that the convective flow induced by the temperature gradient of the sample is the main driving force in the growth of well-ordered protein fibrils. Particular attention was devoted to PHF6 peptide and full-length Tau441 protein to form amyloid fibrils. By a combined experimental with the molecular dynamics simulations, the conformational polymorphism of these amyloid fibrils were characterized. The study provided a feasible procedure to optimize the amyloid fibrils formation and characterizations of other types of proteins in future studies.


Assuntos
Amiloide/química , Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos , Amiloide/ultraestrutura , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Dobramento de Proteína , Análise Espectral , Relação Estrutura-Atividade , Difração de Raios X
13.
Sci Rep ; 10(1): 11035, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620912

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32117950

RESUMO

Polycaprolactone (PCL) is a biocompatible and biodegradable polymer widely used for the realization of 3D scaffold for tissue engineering applications. The hot embossing technique (HE) allows the obtainment of PCL scaffolds with a regular array of micro pillars on their surface. The main drawback affecting this kind of micro fabrication process is that such structural superficial details can be damaged when detaching the replica from the mold. Therefore, the present study has focused on the optimization of the HE processes through the development of an analytical model for the prediction of the demolding force as a function of temperature. This model allowed calculating the minimum demolding force to obtain regular micropillars without defects. We demonstrated that the results obtained by the analytical model agree with the experimental data. To address the importance of controlling accurately the fabricated microstructures, we seeded on the PCL scaffolds human stromal cell line (HS-5) and monocytic leukemia cell line (THP-1) to evaluate how the presence of regular or deformed pillars affect cells viability. In vitro viability results, scanning electron and fluorescence microscope imaging analysis show that the HS-5 preferentially grows on regular microstructured surfaces, while the THP-1 on irregular microstructured ones.

15.
Nat Mater ; 19(4): 456-463, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31844278

RESUMO

A promising class of materials for applications that rely on electron transfer for signal generation are the n-type semiconducting polymers. Here we demonstrate the integration of an n-type conjugated polymer with a redox enzyme for the autonomous detection of glucose and power generation from bodily fluids. The reversible, mediator-free, miniaturized glucose sensor is an enzyme-coupled organic electrochemical transistor with a detection range of six orders of magnitude. This n-type polymer is also used as an anode and paired with a polymeric cathode in an enzymatic fuel cell to convert the chemical energy of glucose and oxygen into electrical power. The all-polymer biofuel cell shows a performance that scales with the glucose content in the solution and a stability that exceeds 30 days. Moreover, at physiologically relevant glucose concentrations and from fluids such as human saliva, it generates enough power to operate an organic electrochemical transistor, thus contributes to the technological advancement of self-powered micrometre-scale sensors and actuators that run on metabolites produced in the body.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Técnicas Eletroquímicas , Glucose/metabolismo , Saliva/metabolismo , Humanos
16.
Micromachines (Basel) ; 10(8)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434220

RESUMO

This work presents a disposable passive microfluidic system, allowing chemotaxis studies, through the generation of a concentration gradient. The device can handle liquid flows without an external supply of pressure or electric gradients, but simply using gravity force. It is able to ensure flow rates of 10 µL/h decreasing linearly with 2.5% in 24 h. The device is made of poly(methylmethacrylate) (PMMA), a biocompatible material, and it is fabricated by micro-milling and solvent assisted bonding. It is assembled into a mini incubator, designed properly for cell biology studies in passive microfluidic devices, which provides control of temperature and humidity levels, a contamination-free environment for cells with air and 5% of CO2. Furthermore, the mini incubator can be mounted on standard inverted optical microscopes. By using our microfluidic device integrated into the mini incubator, we are able to evaluate and follow in real-time the migration of any cell line to a chemotactic agent. The device is validated by showing cell migration at a rate of 0.36 µm/min, comparable with the rates present in scientific literature.

17.
Appl Spectrosc ; 73(10): 1208-1217, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31219322

RESUMO

Brain ischemia represents a leading cause of death and disability in industrialized countries. To date, therapeutic intervention is largely unsatisfactory and novel strategies are required for getting better protection of neurons injured by cerebral blood flow restriction. Recent evidence suggests that brain insulin leads to protection of neuronal population undergoing apoptotic cell death via modulation of oxidative stress and mitochondrial cytochrome c (CytC), an effect to be better clarified. In this work, we investigate on the effect of insulin given intracerebroventricular (ICV) before inducing a transient global ischemia by bilateral occlusion of the common carotid arteries (BCCO) in Mongolian gerbils (MG). The transient (3 min) global ischemia in MG is observed to produce neurodegenerative effect mainly into CA3 hippocampal region, 72 h after cerebral blood restriction. Intracerebroventricular microinfusion of insulin significantly prevents the apoptosis of CA3 hippocampal neurons. Histological observation, after hematoxylin and eosin staining, puts in evidence the neuroprotective role of insulin, but Raman microimaging provides a clearer insight in the CytC mechanism underlying the apoptotic process. Above all, CytC has been revealed to be an outstanding, innate Raman marker for monitoring the cells status, thanks to its resonant scattering at 530 nm of incident wavelength and to its crucial role in the early stages of cells apoptosis. These data support the hypothesis of an insulin-dependent neuroprotection and antiapoptotic mechanism occurring in the brain of MG undergoing transient brain ischemia. The observed effects occurred without any peripheral change on serum glucose levels, suggesting an alternative mechanism of insulin-induced neuroprotection.


Assuntos
Apoptose , Isquemia Encefálica/tratamento farmacológico , Região CA3 Hipocampal/efeitos dos fármacos , Citocromos c/fisiologia , Insulina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Gerbillinae , Infusões Intraventriculares , Insulina/administração & dosagem , Masculino , Mitocôndrias/efeitos dos fármacos , Neuroproteção , Fármacos Neuroprotetores/administração & dosagem , Análise Espectral Raman/métodos
18.
Nat Commun ; 10(1): 1690, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979901

RESUMO

The effect of direct or indirect binding of intercalant molecules on DNA structure is of fundamental importance in understanding the biological functioning of DNA. Here we report on self-suspended DNA nanobundles as ultrasensitive nanomechanical resonators for structural studies of DNA-ligand complexes. Such vibrating nanostructures represent the smallest mechanical resonator entirely composed of DNA. A correlative analysis between the mechanical and structural properties is exploited to study the intrinsic changes of double strand DNA, when interacting with different intercalant molecules (YOYO-1 and GelRed) and a chemotherapeutic drug (Cisplatin), at different concentrations. Possible implications of our findings are related to the study of interaction mechanism of a wide category of molecules with DNA, and to further applications in medicine, such as optimal titration of chemotherapeutic drugs and environmental studies for the detection of heavy metals in human serum.


Assuntos
DNA/química , Substâncias Intercalantes/química , Ligantes , Nanomedicina/métodos , Antineoplásicos/química , Cisplatino/química , Cristalografia por Raios X , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Ligação Proteica , Estresse Mecânico
19.
Biosensors (Basel) ; 9(1)2019 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-30832416

RESUMO

Biomarkers detection at an ultra-low concentration in biofluids (blood, serum, saliva, etc.) is a key point for the early diagnosis success and the development of personalized therapies. However, it remains a challenge due to limiting factors like (i) the complexity of analyzed media, and (ii) the aspecificity detection and the poor sensitivity of the conventional methods. In addition, several applications require the integration of the primary sensors with other devices (microfluidic devices, capillaries, flasks, vials, etc.) where transducing the signal might be difficult, reducing performances and applicability. In the present work, we demonstrate a new class of optical biosensor we have developed integrating an optical waveguide (OWG) with specific plasmonic surfaces. Exploiting the plasmonic resonance, the devices give consistent results in surface enhanced Raman spectroscopy (SERS) for continuous and label-free detection of biological compounds. The OWG allows driving optical signals in the proximity of SERS surfaces (detection area) overcoming spatial constraints, in order to reach places previously optically inaccessible. A rutile prism couples the remote laser source to the OWG, while a Raman spectrometer collects the SERS far field scattering. The present biosensors were implemented by a simple fabrication process, which includes photolithography and nanofabrication. By using such devices, it was possible to detect cell metabolites like Phenylalanine (Phe), Adenosine 5-triphosphate sodium hydrate (ATP), Sodium Lactate, Human Interleukin 6 (IL6), and relate them to possible metabolic pathway variation.


Assuntos
Técnicas Biossensoriais/métodos , Óptica e Fotônica/métodos , Análise Espectral Raman/métodos , Adenosina/química , Adenosina/isolamento & purificação , Trifosfato de Adenosina/química , Trifosfato de Adenosina/isolamento & purificação , Humanos , Interleucina-6/química , Interleucina-6/isolamento & purificação , Dispositivos Lab-On-A-Chip , Limite de Detecção , Fenilalanina/química , Fenilalanina/isolamento & purificação , Lactato de Sódio/química , Lactato de Sódio/isolamento & purificação , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
20.
Sci Rep ; 9(1): 4021, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858456

RESUMO

A long-standing goal of neuroscience is a theory that explains the formation of the minicolumns in the cerebral cortex. Minicolumns are the elementary computational units of the mature neocortex. Here, we use zinc oxide nanowires with controlled topography as substrates for neural-cell growth. We observe that neuronal cells form networks where the networks characteristics exhibit a high sensitivity to the topography of the nanowires. For certain values of nanowires density and fractal dimension, neuronal networks express small world attributes, with enhanced information flows. We observe that neurons in these networks congregate in superclusters of approximately 200 neurons. We demonstrate that this number is not coincidental: the maximum number of cells in a supercluster is limited by the competition between the binding energy between cells, adhesion to the substrate, and the kinetic energy of the system. Since cortical minicolumns have similar size, similar anatomical and topological characteristics of neuronal superclusters on nanowires surfaces, we conjecture that the formation of cortical minicolumns is likewise guided by the interplay between energy minimization, information optimization and topology. For the first time, we provide a clear account of the mechanisms of formation of the minicolumns in the brain.


Assuntos
Técnicas de Cultura de Células/métodos , Nanofios , Rede Nervosa/ultraestrutura , Neurônios/fisiologia , Óxido de Zinco , Animais , Células Cultivadas , Simulação por Computador , Embrião de Mamíferos , Hipocampo , Modelos Biológicos , Células-Tronco Neurais , Neurônios/citologia , Ratos Wistar , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...